(2)求(用表示), 查看更多

 

题目列表(包括答案和解析)

表示不大于的最大整数.令集合,对任意,定义,集合,并将集合中的元素按照从小到大的顺序排列,记为数列

(Ⅰ)求的值;

(Ⅱ)求的值;

(Ⅲ)求证:在数列中,不大于的项共有项.

查看答案和解析>>

(2012•朝阳区一模)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.
(Ⅰ)下表是这次考试成绩的频数分布表,求正整数a,b的值;
区间 [75,80) [80,85) [85,90) [90,95) [95,100]
人数 50 a 350 300 b
(Ⅱ)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;
(Ⅲ)在(Ⅱ)中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X,求X的分布列与数学期望.

查看答案和解析>>

(2013•肇庆一模)某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了x•46%=230人,回答问题统计结果如图表所示.
组号 分组 回答正确
的人数
回答正确的人数
占本组的概率
第1组 [15,25) 5 0.5
第2组 [25,35) a 0.9
第3组 [35,45) 27 x
第4组 [45,55) B 0.36
第5组 [55,65) 3 y
(Ⅰ)分别求出a,b,x,y的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(Ⅲ)在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

(2012•朝阳区一模)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.
(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;
区间 [25,30) [30,35) [35,40) [40,45) [45,50]
人数 50 50 a 150 b
(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

(2012•青岛二模)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位:辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A类轿车有10辆.
(Ⅰ)求z的值;
轿车A 轿车B 轿车C
舒适型 100 150 z
标准型 300 450 600
(Ⅱ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个分数a.记这8辆轿车的得分的平均数为
.
x
,定义事件E={|a-
.
x
|≤0.5
,且函数f(x)=ax2-ax+2.31没有零点},求事件E发生的概率.

查看答案和解析>>

一.选择题:

题号

1

2

3

4

5

6

7

8

答案

C

A

C

B

B

A

B

D

二.填空题:

9.6、30、10;                 10.?5;               11.

12.?250;                     13.;              14.③④

三.解答题:

15.解: ;  ………5分

方程有非正实数根

 

综上: ……………………12分16.解:(I)设袋中原有个白球,由题意知

可得(舍去)

答:袋中原有3个白球. 。。。。。。。。4分

(II)由题意,的可能取值为1,2,3,4,5

 

所以的分布列为:

1

2

3

4

5

。。。。。。。。。9分

(III)因为甲先取,所以甲只有可能在第一次,第三次和第5次取球,记”甲取到白球”为事件,则

答:甲取到白球的概率为.。。。。。。。。13分

17.解:(1)由.,∴=1;。。。。。。。。。4分

(2)任取∈(1,+∞),且设,则:

>0,

在(1,+∞)上是单调递减函数;。。。。。。。。。8分

(3)当直线∈R)与的图象无公共点时,=1,

<2+=4=,|-2|+>2,

得:.。。。。。。。。13分

18.(Ⅰ)证明:∵底面底面, ∴

   又∵平面平面

    ∴平面3分

(Ⅱ)解:∵点分别是的中点,

,由(Ⅰ)知平面

平面

为二面角的平面角,

底面,∴与底面所成的角即为

,∵为直角三角形斜边的中点,

为等腰三角形,且,∴

(Ⅲ)过点于点,∵底面,

   ∴底面,为直线在底面上的射影,

   要,由三垂线定理的逆定理有要

 设,则由

 又∴在直角三角形中,

∵ 

在直角三角形中,

 ,即时,

(Ⅲ)以点为坐标原点,建立如图的直角坐标系,设,则,设,则

,

,时时,.

 

 

19  证明:(1)对任意x1, x2∈R, 当 a0,

=                         =……(3分)

∴当时,,即

  当时,函数f(x)是凸函数.   ……(4分)

 (2) 当x=0时, 对于a∈R,有f(x)≤1恒成立;当x∈(0, 1]时, 要f(x)≤1恒成立

, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 当=1时, 取到最小值为0,∴ a≤0, 又a≠0,∴ a的取值范围是.

由此可知,满足条件的实数a的取值恒为负数,由(1)可知函数f(x)是凸函数………10分

(3)令,∵,∴,……………..(11)分

,则,故

,则

;,……………..(12)分

,则;∴时,.

综上所述,对任意的,都有;……………..(13)分

所以,不是R上的凸函数. ……………..(14)分

对任意,有

所以,不是上的凸函数. ……………..(14)分

20. 解:(1)设数列的前项和为,则

……….4分

(2)为偶数时,

为奇数时,

………9分

(3)方法1、因为所以

,时,

又由,两式相减得

 所以若,则有………..14分

方法2、由,两式相减得

………..11分

所以要证明,只要证明

或①由:

所以…………………14分

或②由:

…………………14分

数学归纳法:①当

②当

综上①②知若,则有.

所以,若,则有.。。。。。。。。。14分

 

 


同步练习册答案