10.10题号一二三得分171819202122 分数 一.选择题(本大题12个小题,每小题5分,共60分)题号123456789101112选项 查看更多

 

题目列表(包括答案和解析)

某学校想要调查全校同学是否知道迄今为止获得过诺贝尔物理奖的6位华人的姓名,为此出了一份考卷.该卷共有6个单选题,每题答对得20分,答错、不答得零分,满分120分.阅卷完毕后,校方公布每题答对率如下:
题号
答对率80%70%60%50%40%30%
则此次调查全体同学的平均分数是    分.

查看答案和解析>>

某学校想要调查全校同学是否知道迄今为止获得过诺贝尔物理奖的6位华人的姓名,为此出了一份考卷.该卷共有6个单选题,每题答对得20分,答错、不答得零分,满分120分.阅卷完毕后,校方公布每题答对率如下:
题号
答对率80%70%60%50%40%30%
则此次调查全体同学的平均分数是    分.

查看答案和解析>>

某学校想要调查全校同学是否知道迄今为止获得过诺贝尔物理奖的6位华人的姓名,为此出了一份考卷.该卷共有6个单选题,每题答对得20分,答错、不答得零分,满分120分.阅卷完毕后,校方公布每题答对率如下:
题号
答对率80%70%60%50%40%30%
则此次调查全体同学的平均分数是________分.

查看答案和解析>>

(选做题)请考生在A、B、C三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.
A.选修4-1(几何证明选讲)已知AD为圆O的直径,直线BA与圆O相切与点A,直线OB与弦AC垂直并相交于点G,与弧AC相交于M,连接DC,AB=10,AC=12.
(Ⅰ)求证:BA•DC=GC•AD;(Ⅱ)求BM.
B.选修4-4(坐标系与参数方程)求直线
x=1+4t
y=-1-3t
(t为参数)被曲线ρ=
2
cos(θ+
π
4
)
所截的弦长.
C.选修4-5(不等式选讲)(Ⅰ)求函数y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求证:a4+6a2b2+b4>4ab(a2+b2).

查看答案和解析>>

本题有(I)、(II)、(III)三个选作题,每题7分,请考生任选两题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知a∈R,矩阵P=
02
-10
,Q=
01
a0
,若矩阵PQ对应的变换把直线l1:x-y+4=0变为直线l2:x+y+4=0,求实数a的值.
(2)选修4-4:坐标系与参数方程
在极坐标系中,求圆C:ρ=2上的点P到直线l:ρ(cosθ+
3
sinθ)=6
的距离的最小值.
(3)选修4-5:不等式选讲
已知实数x,y满足x2+4y2=a(a>0),且x+y的最大值为5,求实数a的值.

查看答案和解析>>

1――12   A  B  B  B  B  C  D  D  C  A  C  B

 

13、1            14、e             15、      16、①②④     

17、解上是增函数,

方程=x2 + (m ? 2 )x + 1 = 0的两个根在0至3之间

<m≤0

依题意得:m的取值范围是:<m≤-1或m>0

18、解:(1),

当a=1时 解集为

当a>1时,解集为

当0<a<1时,解集为

(2)依题意知f(1)是f(x)的最小值,又f(1)不可能是端点值,则f(1)是f(x)的一个极小值,由

19、解:(1)当所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,

 

所以f(x)=

(2)由题意,不妨设A点在第一象限,坐标为(t,-t2-t+5)其中,

则S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.

(舍去),t2=1.

,所以S(t)在上单调递增,在上单调递减,

所以当t=1时,ABCD的面积取得极大值也是S(t)在上的最大值。

从而当t=1时,矩形ABCD的面积取得最大值6.

20、解:

21、解:

,要使在其定义域内为单调函数,只需内满足:恒成立.

① 当时,,∵,∴,∴

内为单调递减.  

② 当时,,对称轴为, ∴.

只需,即

内为单调递增。

 ③当时,,对称轴为.

只需,即恒成立.

综上可得,.     

22、解:(Ⅰ)

       

        同理,令

        ∴f(x)单调递增区间为,单调递减区间为.

        由此可知

   (Ⅱ)由(I)可知当时,有

        即.

    .

  (Ⅲ) 设函数

       

        ∴函数)上单调递增,在上单调递减.

        ∴的最小值为,即总有

        而

       

        即

        令

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案