(I)用表示取到的4个球中红球的个数.求的分布列及的数学期望, (II)求取到的4个球中至少有2个红球的概率. 查看更多

 

题目列表(包括答案和解析)

甲、乙两袋装有大小相同的红球和白球,其中甲袋装有1个红球,4个白球;乙袋装有2个红球,3个白球。现从甲、乙两袋中各任取2个小球。

   (1)用表示取到的4个球中红球的个数,求的分布列及的数学期望;

   (2)求取到的4个球中至少2个红球的概率。

查看答案和解析>>

甲、乙两袋装有大小相同的红球和白球,其中甲袋装有1个红球,4个白球;乙袋装有2个红球,3个白球。现从甲、乙两袋中各任取2个球。

  (Ⅰ)用表示取到的4个球中红球的个数,求的分布列及的数学期望;

(Ⅱ)求取到的4个球中至少有2个红球的概率.

查看答案和解析>>

(2012•茂名二模)某校高一级数学必修I模块考试的成绩分为四个等级,85分-100分为A等,70分-84分为B等,55分-69分为C等,54分以下为D等.右边的茎叶图(十位为茎,个位为叶)记录了某班某小组10名学生的数学必修I模块考试成绩.
(1)写出茎叶图中这10个数据的中位数;
(2)从这10个成绩数据中任取3个数据,记ξ表示取到的成绩数据达到A等或B等的个数,求ξ的分布列和数学期望.

查看答案和解析>>

一个盒子里有10个大小形状相同的小球,其中3个红的,7个黄的.
(1)从盒子中任取一球,求它是红球的概率;
(2)从盒子中任取3个球,求恰好取到2个红球的概率;
(3)从中有放回地取3次球,用ξ表示取到红球的次数,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

一个袋中装有10个红球,20个白球,这些球除颜色外完全相同,一次从中摸出5个球,随机变量表示取到的红球数,服从超几何分布,则=

             (用组合数作答)

 

查看答案和解析>>

一:选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

B

B

B

B

D

B

D

C

C

A

 二、填空题:

13、0

14、

15、

16、①②

三、解答题:

17、(Ⅰ)∵

        

 

 

 

的最大值为,最小正周期是。…………………6分 

注:得出表达式的简化形式得4分,最大值、周期各得1分。

(Ⅱ)由(Ⅰ)知

成立的的取值集合是………10分

注:正确写出正弦的单调增区间2分,答案正确2分。

18、解:(Ⅰ),      

 ,

随机变量的分布列为

0

1

2

3

P

数学期望………………………………………8分

注:每个概率算对得1分,分布列2分,期望2分。

   (II)所求的概率…………12分

注:知道概率加法公式得2分,结果正确得2分。

19、(本题满分12分)

证明:(1)在直三棱柱

∵底面三边长

,              --------------------------------1分

又直三棱柱中  , 

      

       ---------------------------------3分

;                 ---------------------------------4分

(2)设的交点为,连结,---------------------5分

∵D是AB的中点,E是BC1的中点,

,                    ----------------------------7分

.              ----------------------------8分

(3)过点C作CF⊥AB于F,连接C1F         

由已知C1C垂直平面ABC,则∠C1FC为二面角的平面角 ----------9分

在Rt△ABC中,,,则           ----------10分

                                  ----------11分

∴二面角的正切值为                              ---------- 12分

(另:可以建立空间直角坐标系用向量方法完成,酌情给分,过程略)

20、解(1)

增函数,(0,2)为减函数

      ………………………………………………2分

       (2), …………………         4分

                            5分

       ……………………7分

   (3)

      

      

       ……………………………………………………………………12分

21、 解:(1)f(x)对任意

                             2分

        令

                                       4分

   (2)解:数列{an}是等差数列    f(x)对任意x∈R都有

        则令                        5分

       ∴{a­­n}是等差数列                                              8分

   (3)解:由(2)有                         9分

       

∴Tn≤Sn                  该题也可用数学归纳法做。              12分

22、解:(1)∵

∴线段NP是AM的垂直平分线,                                      2分

                                   3分

                                            

∴点N的轨迹是以点C、A为焦点的椭圆;                             4分

∴点N的轨迹E的方程是                                  5分

(2)当直线的斜率不存在时,,∴=         6分

当直线的斜率存在时,设其方程为,

,△,              7分

设G(x1,y1),H(x2,y2)

,,∵,∴   8分

,,                             9分

,,,                  10分

 ,

∵点在点之间  ,   ∴<1                                   11分

的取值范围是[)。


同步练习册答案