18. 一个口袋中装有大小相同的2个白球和4个黑球. (1)采取放回抽样方式.从中摸出两个球.求两球恰好颜色不同的概率, (2)采取不放回抽样方式.从中摸出两个球.求摸得白球的个数的期望. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.

(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;

(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

(本小题满分12分)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.
(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

(本小题满分12分)
一个口袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望。

查看答案和解析>>

(本小题满分12分)

一个口袋中装有大小相同的2个白球和3个黑球.

(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;

(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望。

 

查看答案和解析>>

(本小题满分12分)

一个口袋中装有大小相同的个红球()和个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖。

(Ⅰ)试用表示一次摸奖中奖的概率

(Ⅱ)记从口袋中三次摸奖(每次摸奖后放回)恰有一次中奖的概率为,求的最大值?

(Ⅲ)在(Ⅱ)的条件下,将个白球全部取出后,对剩下的个红球全部作如下标记:记上号的有个(),其余的红球记上号,现从袋中任取一球。表示所取球的标号,求的分布列、期望和方差。

 

查看答案和解析>>

一、选择题:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

2,4,6

13.    14.7   15.2    16.

17.17.解:(1)  --------------------2分

 --------------------4分

--------------------6分

.--------------------8分

时(9分),取最大值.--------------------10分

(2)当时,,即,--------------------11分

解得.-------------------- 12分

18.解法一 “有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”,记“有放回摸球两次,两球恰好颜色不同”为事件A,

∵“两球恰好颜色不同”共2×4+4×2=16种可能,

解法二  “有放回摸取”可看作独立重复实验∵每次摸出一球得白球的概率为

∴“有放回摸两次,颜色不同”的概率为

(2)设摸得白球的个数为,依题意得

19.方法一

 

   (2)

20.解:(1)

  ∵ x≥1. ∴ ,-----------------------------------------------------2分

   (当x=1时,取最小值).

  ∴ a<3(a=3时也符合题意). ∴ a≤3.------------------------------------4分

  (2),即27-6a+3=0, ∴ a=5,.------------6分

,或 (舍去) --------------------------8分

时,; 当时,

  即当时,有极小值.又    ---------10分

   ∴ fx)在上的最小值是,最大值是. ----------12分

21.解:(Ⅰ)∵,∴,

∵数列{}的各项均为正数,∴

),所以数列{}是以2为公比的等比数列.………………3分

的等差中项,

,∴

∴数列{}的通项公式.……………………………………………………6分

   (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

      1

   ②

②-1得,

=……………………………10分

要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

∴使S>50成立的正整数n的最小值为5. ……………………………12分

22.解:(Ⅰ)由已知得

 

              …………4分

  (Ⅱ)设P点坐标为(x,y)(x>0),由

        

                       …………5分    

         ∴   消去m,n可得

             ,又因     8分 

        ∴ P点的轨迹方程为  

        它表示以坐标原点为中心,焦点在轴上,且实轴长为2,焦距为4的双曲线

的右支             …………9分

(Ⅲ)设直线l的方程为,将其代入C的方程得

        

        即                          

 易知(否则,直线l的斜率为,它与渐近线平行,不符合题意)

        又     

       设,则

       ∵  l与C的两个交点轴的右侧

          

       ∴ ,即     

又由  同理可得       …………11分

        由

       

     ∴

   由

           

  由

           

消去

解之得: ,满足                …………13分

故所求直线l存在,其方程为:  …………14分

 

 


同步练习册答案