20. 如图,,点A在直线上的射影为.点在直线上的射影为.已知. (1)求直线分别与平面所成角的大小, (2)求二面角的正弦值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,直四棱柱ABCDA1B1C1D1中,底面ABCD是边长为a的   

菱形,且,侧棱AA1长等于3aO为底面ABCD

角线的交点.

(1)求证:OA1∥平面B1CD1

(2)求异面直线ACA1B所成的角;

(3)在棱上取一点F,问AF为何值时,C1F⊥平面BDF

查看答案和解析>>


(本小题满分12分)
如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.

(I)设e=,求|BC|与|AD|的比值;
(II)当e变化时,是否存在直线l,使得BO//AN,并说明理由.

查看答案和解析>>

(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.

(1)求异面直线PA与CD所成的角;

(2)求证:PC∥平面EBD;

(3)求二面角A—BE--D的余弦值.

 

查看答案和解析>>

(本小题满分12分)

如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。

(1)求椭圆的离心率;

(2)若平行四边形OCED的面积为, 求椭圆的方程.

 

查看答案和解析>>

 

 (本小题满分12分)

如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.

(I)设e=,求|BC|与|AD|的比值;

(II)当e变化时,是否存在直线l,使得BO//AN,并说明理由.

 

查看答案和解析>>


同步练习册答案