题目列表(包括答案和解析)
已知正四棱柱ABCD-A1B1C1D1,AB=1,AA1=2,点E为CC1中点,点F为BD1中点.
(1)证明:EF为BD1与CC1的公垂线(即证EF与BD1、CC1都垂直);
(2)求点D1到面BDE的距离.
已知正四棱柱ABCD—A1B1C1D1的底面边长AB=6,侧棱长,它的外接球的球心为O,点E是AB的中点,点P是球O的球面上任意一点,则有以下结论:
①PE长的最大值是9;
②三棱锥P—EBC的最大值是[]
③存在过点E的平面,截球O的截面面积是;
④三棱锥P—AEC1体积的最大值是20。
其中正确结论的是 。(写出所有正确结论的序号)
已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为
A. B. C. D.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com