20. 设椭圆的离心率为=,点是椭圆上的一点.且点到椭圆两焦点的距离之和为4. (Ⅰ)求椭圆的方程, (Ⅱ)椭圆上一动点关于直线的对称点为,求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

设椭圆的离心率为,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.

(1)求椭圆的方程;

(2)椭圆上一动点,关于直线的对称点为,求的取值范围.

 

查看答案和解析>>

( (本小题满分12分)

设椭圆的离心率为,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.

(1)求椭圆的方程;

(2)椭圆上一动点,关于直线的对称点为,求的取值范围.

 

查看答案和解析>>

(本题满分12分)设A(xy)、B(xy) 是椭圆(a >  b > 0) 上的两点, = (),且满足· = 0,椭圆的离心率e = ,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值.

查看答案和解析>>

(本题满分12分)设A(xy)、B(xy) 是椭圆(a >  b > 0) 上的两点, = (),且满足· = 0,椭圆的离心率e = ,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值.

查看答案和解析>>

(本题满分12分)

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线,是否存在实数m,使直线与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。

 

查看答案和解析>>


同步练习册答案