题目列表(包括答案和解析)
(本题总分14分)已知函数=ax2+x-3,g(x)=-x+4lnx
h(x)=-g(x)
(1)当a=1时,求函数h(x)的极值。
(2)若函数h(x)有两个极值点,求实数a的取值范围。
(3)定义:对于函数F(x)和G(x),若存在直线l:y=kx+b,使得对于函数F(x)和
G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线l:y=kx+b为函数F(x)和G(x)的“隔离直线”。则当a=1时,函数和g(x)是否存在“隔离直线”。若存在,求出所有的“隔离直线”。若不存在,请说明理由。
数列{an}前n项和为Sn,已知a1=,且对任意正整数m,n,都有am+n=am·an,若Sn<a恒成立则实数a的最小值为( )。
已知函数是定义在R上的偶函数,且对任意,都有。当时,设函数上的反函数为则的值为( )
A. B. C. D.
已知函数是定义在R上的偶函数,且对任意,都有。当时,设函数上的反函数为则的值为( )
A. | B. | C. | D. |
A. | B. | C. | D. |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com