如图, 在矩形中, , 分别为线段的中点, ⊥平面. ⑴ 求证: ∥平面, ⑵ 求证:平面⊥平面, ⑶ 若, 求三棱锥的体积. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.

(理)某种型号汽车四个轮胎半径相同,均为,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为 (假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路(如图(1)所示,其中()),且前轮已在段上时,后轮中心在位置;若前轮中心到达处时,后轮中心在处(假定该汽车能顺利驶上该上坡路). 设前轮中心在处时与地面的接触点分别为,且,. (其它因素忽略不计)

(1)如图(2)所示,的延长线交于点

求证:(cm);

(2)当=时,后轮中心从处移动到处实际移动了多少厘米? (精确到1cm)

 

查看答案和解析>>

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
(理)某种型号汽车四个轮胎半径相同,均为,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为 (假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路(如图(1)所示,其中()),且前轮已在段上时,后轮中心在位置;若前轮中心到达处时,后轮中心在处(假定该汽车能顺利驶上该上坡路). 设前轮中心在处时与地面的接触点分别为,且,. (其它因素忽略不计)

(1)如图(2)所示,的延长线交于点
求证:(cm);

(2)当=时,后轮中心从处移动到处实际移动了多少厘米? (精确到1cm)

查看答案和解析>>

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
(理)某种型号汽车四个轮胎半径相同,均为,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为 (假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路(如图(1)所示,其中()),且前轮已在段上时,后轮中心在位置;若前轮中心到达处时,后轮中心在处(假定该汽车能顺利驶上该上坡路). 设前轮中心在处时与地面的接触点分别为,且,. (其它因素忽略不计)

(1)如图(2)所示,的延长线交于点
求证:(cm);

(2)当=时,后轮中心从处移动到处实际移动了多少厘米? (精确到1cm)

查看答案和解析>>

(本小题满分14分)

在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对

称图形),其中矩形的三边由长6分米的材料弯折而成,边的长

分米();曲线拟从以下两种曲线中选择一种:曲线是一段余弦曲线

(在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点

边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点

边的距离为.

 (1)试分别求出函数的表达式;

(2)要使得点边的距离最大,应选用哪一种曲线?此时,最大值是多少?

 

 

 

 

查看答案和解析>>

(本小题满分14分)
在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对
称图形),其中矩形的三边由长6分米的材料弯折而成,边的长
分米();曲线拟从以下两种曲线中选择一种:曲线一段余弦曲线
(在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点
边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点
边的距离为.
(1)试分别求出函数的表达式;
(2)要使得点边的距离最大,应选用哪一种曲线?此时,最大值是多少?
 

查看答案和解析>>


同步练习册答案