10.已知在区间上函数是减函数.且当.则 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

 

5.已知在区间上函数是减函数,且当,则

A.                                         B.      

C.                                         D.

查看答案和解析>>

函数f(x)是R上以2为周期的奇函数,已知当x∈(0,1)时,f(x)=log2
1
1-x
,则f(x)在区间(1,2)上是(  )
A、减函数,且f(x)<0
B、增函数,且f(x)<0
C、减函数,且f(x)>0
D、增函数,且f(x)>0

查看答案和解析>>

已知函数f(x)=
x
a
+
a-1
x
(a≠0且a≠1).
(Ⅰ)试就实数a的不同取值,写出该函数的单调递增区间;
(Ⅱ)已知当x>0时,函数在(0,
6
)
上单调递减,在(
6
,+∞)
上单调递增,求a的值并写出函数F(x)=
3
f(x)
的解析式;
(Ⅲ)记(Ⅱ)中的函数F(x)=
3
f(x)
的图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出l的方程;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ax2-2
4+2b-b2
x
g(x)=-
1-(x-a)2
(a,b∈R).
(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)对满足(2)中的条件的整数对(a,b),奇函数h(x)的定义域和值域都是区间[-k,k],且x∈[-k,0]时,h(x)=f(x),求k的值.

查看答案和解析>>

已知函数f(x)=loga(3-ax).
(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;
(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案