10.已知抛物线上一点A(0.2)和两个动点P.Q.当PQ⊥PA时.点Q的纵坐 标的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

已知抛物线C:y2=mx(m≠0)的准线与直线l:kx-y+2k=0(k≠0)的交点M在x轴上,l与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N(p,0).
(1)求抛物线C的方程;
(2)求实数p的取值范围;
(3)若C的焦点和准线为椭圆Q的一个焦点和一条准线,试求Q的短轴的端点的轨迹方程.

查看答案和解析>>

已知抛物线、椭圆和双曲线都经过点M(2,1),它们在y轴上有一个公共焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)已知动直线l过点P(0,3),交抛物线于A、B两点,是否存在垂直于y轴的直线m被以AP为直径的圆截得的弦长为定值?若存在,求出m的方程;若不存在,说明理由.

查看答案和解析>>

已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
16
3
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
16
3
,求侧棱长”;也可以是“若正四棱锥的体积为
16
3
,求所有侧面面积之和的最小值”.
现有正确命题:过点A(-
p
2
,0)
的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.

查看答案和解析>>

已知抛物线y2=2px(p>0)和四个点A、B、C、D,其中A在抛物线上,B(b,0),C(0,c)(c≠0),且直线AC交X轴于D点
(1)若p=2,b=-8,且D为AC中点,求证:AC⊥BC
(2)若p=2,b=1,且AC⊥BC,判断A,C,D三点的位置关系,并说明理由.
(3)对(1)(2)两个问题的探究过程中,涉及到以下三个条件:
①AC⊥BC;  ②点A、C、D的位置关系; ③点B的坐标.
对抛物线y2=2px(p>0),请以其中的两个条件做前提,一个做结论,写出三个真命题,(不必证明).

查看答案和解析>>

已知抛物线C:y2=mx(m≠0)的准线与直线l:kx-y+2k=0(k≠0)的交点M在x轴上,l与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N(p,0).
(1)求抛物线C的方程;
(2)求实数p的取值范围;
(3)若C的焦点和准线为椭圆Q的一个焦点和一条准线,试求Q的短轴的端点的轨迹方程.

查看答案和解析>>


同步练习册答案