9.已知函数的定义域为R.且最小正周期为5.同时满足.且. 在区间内.方程的解的个数至少有 ( ) A.7个 B.5个 C.4个 D.3个 查看更多

 

题目列表(包括答案和解析)

已知函数的定义域为,值域为[-5,4];函数 g(x)=asinx+2bcosx,x∈R.
(1)求函数g(x)的最小正周期和最大值;
(2)当x∈[0,π],且g(x)=5时,求tan x.

查看答案和解析>>

已知函数数学公式的定义域为数学公式,值域为[-5,4];函数 g(x)=asinx+2bcosx,x∈R.
(1)求函数g(x)的最小正周期和最大值;
(2)当x∈[0,π],且g(x)=5时,求tan x.

查看答案和解析>>

已知函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a.设函数F(x)=[f(x)]2-[f(-x)]2,且F(x)不恒等于0,则对于F(x)有如下说法:

①定义域为[-b,b];②是奇函数;③最小值为0;④在定义域内单调递增.

其中正确说法的个数有

A.4                   B.3                   C.2                   D.1

查看答案和解析>>

已知函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R且0<b<-a,已知f(x)=0无解,设函数
F(x)=f2(x)+f2(-x),则对于F(x)有以下四个说法:
①定义域是[-b,b];②是偶函数;③最小值是0;④在定义域内单调递增,
其中正确的有(    )。(填入你认为正确的所有序号)

查看答案和解析>>

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>


同步练习册答案