题目列表(包括答案和解析)
(本小题满分14分)已知函数满足当,当的最大值为。
(1)求时函数的解析式;
(2)是否存在实数使得不等式对于若存在,求出实数 的取值集合,若不存在,说明理由.
(本小题满分14分)已知函数满足当,当的最大值为。
(1)求时函数的解析式;
(2)是否存在实数使得不等式对于若存在,求出实数 的取值集合,若不存在,说明理由.
(本小题满分14分)已知函数满足,且有唯一实数解。
(1)求的表达式 ;
(2)记,且=,求数列的通项公式。
(3)记 ,数列{}的前 项和为 ,是否存在k∈N*,使得对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
(本小题满分14分)已知函数满足,且有唯一实数解。
(1)求的表达式 ;
(2)记,且=,求数列的通项公式。
(3)记 ,数列{}的前 项和为 ,是否存在k∈N*,使得对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
.本小题满分14分)
已知定义在实数集R上的偶函数的最小值为3,且当时,,其中e是自然对数的底数。
(1)求函数的解析式;
(2)若实数使得存在,只要,就有求正整
数n的最大值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com