题目列表(包括答案和解析)
(本小题满分12分)
已知点C(4,0)和直线 P是动点,作垂足为Q,且设P点的轨迹是曲线M。
(1)求曲线M的方程;
(2)点O是坐标原点,是否存在斜率为1的直线m,使m与M交于A、B两点,且若存在,求出直线m的方程;若不存在,说明理由。
(本小题满分12分)已知常数a > 0, n为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x的函数.(1) 判定函数f n ( x )的单调性,并证明你的结论.(2) 对任意n ?? a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n)
(本小题满分12分)已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。
(1)写出直线与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。
(本小题满分12分) 已知双曲线C:的右焦点为,过点
作直线交双曲线C的右支于两点,试确定的范围,使以为直径的圆过双曲线的中心.
(本小题满分12分)
已知椭圆C:(a>b>0)的离心率为短轴一个端点到右焦点的
距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的
最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com