例71.在△ABC中.角A.B.C所对的边分别是a.b.c.若a.b.c成等差数列.则 .讲解 由题设可取a=b=c即三角形ABC为等边三角形.则 查看更多

 

题目列表(包括答案和解析)

在△ABC中,角A、B、C所对的边分别为a、b、c,若a2+b2=6c2,则(cotA+cotB)•tanC的值为
 

查看答案和解析>>

在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=
3
,C=
π
3
,则A=
 

查看答案和解析>>

在△ABC中,角A、B、C所对的边分别为a、b、c,已知向量m=(2sin
A+C
2
,-1)
n=(2sin
A+C
2
,cos2B+
7
2
)
,且m•n=0.
(I)求角B的大小;
(II)若sinA,sinB,sinC成等差数列,且
BA
BC
=18
,求b的值.

查看答案和解析>>

在△ABC中,角A、B、C所对的边分别为a、b、c,且cosA=
1
3

(Ⅰ)求sin2
B+C
2
+cos2A
的值;
(Ⅱ)若a=
3
,求bc的最大值.

查看答案和解析>>

在△ABC中,角A、B、C所对的边分别为a、b、c.若∠B=45°,b=
2
,a=1,则∠C等于
 
度.

查看答案和解析>>

1.解:由题意可知A=(-2,3),B=(0,4),∴=.

2.解:∵=3x2,∵在(a,a3)处切线为y-a3=3a2(x-a),令y=0,得切线与x轴交点(),切线与直线x=a交于(a,a3),∴曲线处的切线与x轴、直线所围成的三角形的面积为S=,令S=,解得a=±1.

3.解:由已知得1-tanαtanβ=tanα-tanβ,∴tanα=.

4.解:=

5.解:4位乘客进入4节车厢共有256种不同的可能,6位乘客进入各节车厢的人数恰为0,1,2,3的方法共有,∴这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为.

6.解:①菱形不可能,如果这个四边形是菱形,这时菱形的一条对角线垂直抛物线的对称轴,这时四边形的必有一个顶点在抛物线的对称轴上(非抛物线的顶点); ④平行四边形,也不可能,因为抛物上四个点组成的四边形最多有一组对边平行.故连接抛物线上任意四点组成的四边形可能是②③⑤.

7. 解:复数=

8. 解:

9. 解:已知 ,∴

=

=

10. 解:在数列中,若,∴ ,即{}是以为首项,2为公比的等比数列,,所以该数列的通项.

11.解:设,函数有最大值,∵有最小值,∴ 0<a<1, 则不等式的解为,解得2<x<3,所以不等式的解集为.

12.解:已知变量满足约束条件 在坐标系

中画出可行域,如图为四边形ABCD,其中A(3,1),

目标函数(其中)中的z表示斜率为-a的直线系中的

截距的大小,若仅在点处取得最大值,则斜率应小于,即

,所以的取值范围为(1,+∞)。

13.【答案】

【分析】

14.【答案】:7

【分析】:画出可行域,当直线过点(1,2)时,

15.【答案】

【分析】恒成立,

恒成立,       

16.【答案】:18

【分析】是方程的两根,故有:

         (舍)。

        

17.【答案】:25

【分析】:所有的选法数为,两门都选的方法为。         故共有选法数为

18.【答案】

【分析】

         代入得:

         设

         又

        

19.解: 

20.解:  点在x=0处连续,

所以  故

21.解: 

22.解: 

23.解:设圆心,直线的斜率为, 弦AB的中点为的斜率为,所以 由点斜式得

24. 解:则底面共

,由分类计数原理得上底面共,由分步类计数原理得共有

25.解析:本小题主要考查三点共线问题。

      (舍负).

26.解析:本小题主要考查椭圆的第一定义的应用。依题直线过椭圆的左焦点,在 中,,又,∴

27.解析:本小题主要考查三角形中正弦定理的应用。依题由正弦定理得:

,即,

28.解析:本小题主要考查球的内接几何体体积计算问题。其关键是找出

球心,从而确定球的半径。由题意,三角形DAC,三角形DBC都

是直角三角形,且有公共斜边。所以DC边的中点就是球心(到

D、A、C、B四点距离相等),所以球的半径就是线段DC长度的一半。

29.解析:本小题主要考查二次函数问题。对称轴为下方图像翻到轴上方.由区间[0,3]上的最大值为2,知解得检验时,

不符,而时满足题意.

30.解析:本小题主要考查排列组合知识。依题先排除1和2的剩余4个元素有

种方案,再向这排好的4个元素中插入1和2捆绑的整体,有种插法,

∴不同的安排方案共有种。

31.解析:本小题主要考查线性规划的相关知识。由恒成立知,当时,

恒成立,∴;同理,∴以,b为坐标点

所形成的平面区域是一个正方形,所以面积为1.

32.解析:,所以,系数为.

33.解析:由,所以,表面积为.

34.解析:抛物线的焦点为,所以圆心坐标为,圆C的方程为.

35.解析:令,则

所以.

36.解析:

所以.

37.解析:由已知得,单调递减,所以当时,

所以,因为有且只有一个常数符合题意,所以,解得,所以的取值的集合为.

38.【解】:∵展开式中项为

  ∴所求系数为   故填

【点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;

【突破】:利用组合思想写出项,从而求出系数;

39.【解】:如图可知:过原心作直线的垂线,则长即为所求;

的圆心为,半径为

 点到直线的距离为

  ∴      故上各点到的距离的最小值为

【点评】:此题重点考察圆的标准方程和点到直线的距离;

【突破】:数形结合,使用点到直线的距离距离公式。

40.【解】:如图可知:∵

    ∴  ∴正四棱柱的体积等于

【点评】:此题重点考察线面角,解直角三角形,以及求正四面题的体积;

【突破】:数形结合,重视在立体几何中解直角三角形,熟记有关公式。

41.【解】:∵等差数列的前项和为,且 

  即   ∴

  ∴

  ∴  故的最大值为,应填

【点评】:此题重点考察等差数列的通项公式,前项和公式,以及不等式的变形求范围;

【突破】:利用等差数列的前项和公式变形不等式,利用消元思想确定的范围解答本题的关键;

42.解:

43.解:设,即

是等边三角形,

中,

44.解:①,向量垂直

构成等边三角形,的夹角应为

所以真命题只有②。

45.解:分两类:第一棒是丙有,第一棒是甲、乙中一人有

因此共有方案

46.【答案】  2

【解析】则向量与向量共线

47.【答案】 2

【解析】,∴切线的斜率,所以由

48.【答案】

【解析】设A()B()由,();∴由抛物线的定义知

【考点】直线与抛物线的位置关系,抛物线定义的应用

49.【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.

注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.

50.答案:

解析:本小题主要考查求反函数基本知识。求解过程要注意依据函数的定义域进行分段求解以及反函数的定义域问题。

51.答案:

解析:本小题主要考查立体几何球面距离及点到面的距离。设球的半径为,则,∴两点对球心张角为,则,∴,∴,∴所在平面的小圆的直径,∴,设所在平面的小圆圆心为,则球心到平面ABC的距离为

52.答案:5

解析:本小题主要考查二项式定理中求特定项问题。依题中,只有时,其展开式既不出现常数项,也不会出现与乘积为常数的项。

53.答案:

解析:本小题主要针对考查三角函数图像对称性及周期性。依题在区间有最小值,无最大值,∴区间的一个半周期的子区间,且知的图像关于对称,∴,取

54.解:由已知得,则

55.解:

56.

57.解:真命题的代号是:   BD  。易知所盛水的容积为容器容量的一半,故D正确,于是A错误;水平放置时由容器形状的对称性知水面经过点P,故B正确;C的错误可由图1中容器位置向右边倾斜一些可推知点P将露出水面。

58.【答案】

【解析】

59.【答案】

【解析】

60.【答案】(-1,2)

【解析】由函数的图象过点(1,2)得: 即函数过点 则其反函数过点所以函数的图象一定过点

61.【答案】 ,

【解析】(1)当a>0时,由,所以的定义域是;

        (2) 当a>1时,由题意知;当0<a<1时,为增函数,不合;

           当a<0时,在区间上是减函数.故填.

62.【答案】   ,  6

【解析】第二空可分:

①当 时, ;

②当 时, ;

③当时, ;

所以 

也可用特殊值法或ij同时出现6次.

63.解:由余弦定理,原式

64.解:由题意知所以

,所以解集为

65.解:依题意,所以

66.解:由观察可知当,每一个式子的第三项的系数是成等差数列的,所以

第四项均为零,所以

67.解:令,令

    所以

68. 解:圆心为,要没有公共点,根据圆心到直线的距离大于半径可得

,即

69.解:依题可以构造一个正方体,其体对角线就是外接球的直径.

 ,

70. 解:①对除法如不满足,所以排除,

②取,对乘法, ③④的正确性容易推得。

71.【答案】: -1

【分析】: a-2ai-1=a-1-2ai=2i,a=-1

【考点】: 复数的运算

【易错】: 增根a=1没有舍去。

72.【答案】: 0

【分析】: 利用数形结合知,向量a与


同步练习册答案