20. 如图所示.ABCD是一块边长为100米的正方形地皮.其中ATPS是一半径为90米的扇形草地.P是弧TS上一点.其余部分都是空地.现开发商想在空地上建造一个有两边分别落在BC和CD上的长方形停车场PQCR. (I)设.长方形PQCR的面积为S.试建立S关于α的函数关系式, (II)当α为多少时.S最大.并求最大值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

在边长为的正方形ABCD中,EF分别为BCCD的中点,MN分别为ABCF的中点,现沿AEAFEF折叠,使BCD三点重合于B,构成一个三棱锥(如图所示).

   

(Ⅰ)在三棱锥上标注出点,并判别MN与平面AEF的位置关系,并给出证明;

(Ⅱ)是线段上一点,且, 问是否存在点使得,若存在,求出的值;若不存在,请说明理由;

(Ⅲ)求多面体E-AFNM的体积.

 

查看答案和解析>>

(本小题满分12分)

一个多面体的直观图和三视图如图所示:

(I)求证:PABD

(II)连接ACBD交于点O,在线段PD上是否存在一点Q,使直线OQ与平面ABCD所成的角为30o?若存在,求的值;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分12分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.

(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?

(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

 

 

 

查看答案和解析>>

(本小题满分12分)

某体育馆拟用运动场的边角地建一个矩形的健身室 (如图所示),ABCD是一块边长为50 m的正方形地皮,扇形CEF是运动场的一部分,其半径为40 m,矩形AGHM就是拟建的健身室,其中GM分别在ABAD上,H在   上。设矩形AGHM的面积为S,∠HCF=θ,请将S表示为θ的函数,并指出当点H在    的何处时,该健身室的面积最大,最大面积是多少? 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)

如图所示,有块正方形的钢板ABCD,其中一个角有部分损坏,现要把它截成一块正方形的钢板EFGH. 在直角三角形GFC中,∠GFC =θ .若截后的正方形钢板EFGH的面积是原正方形钢板ABCD的面积的三分之二,求θ的值.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案