(1)设全集.集合..则等( ) A. B. C. D. (2)不等式的解集是( ) A. B. C. D. (3)函数的反函数是( ) A. B. C. D. (4)“ 是“的( ) A.必要不充分条件 B.充分不必要条件 C.充分必要条件 D.既不充分也不必要条件 (5)若抛物线的焦点与椭圆的右焦点重合.则的值为( ) A. B. C. D. (6)表面积为 的正八面体的各个顶点都在同一个球面上.则此球的体积为 A. B. C. D. (7)直线与圆没有公共点.则的取值范围是 A. B. C. D. (8)对于函数.下列结论正确的是( ) A.有最大值而无最小值 B.有最小值而无最大值 C.有最大值且有最小值 D.既无最大值又无最小值 (9)将函数的图像按向量平移.平移后的图像如图所示.则平移后的图像所对应函数的解析式是( ) A. B. C. D. (10)如果实数满足条件 .那么的最大值为( ) A. B. C. D. (11)如果的三个内角的余弦值分别等于的三个内角的正弦值.则( ) A.和都是锐角三角形 B.和都是钝角三角形 C.是钝角三角形.是锐角三角形 D.是锐角三角形.是钝角三角形 (12)在正方体上任选3个顶点连成三角形.则所得的三角形是直角非等腰三角形的概率( ) A. B. C. D. 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β

(Ⅰ)计算:(2,3)⊙(-1,4);

(Ⅱ)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;

(Ⅲ)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;

(Ⅳ)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
.
a-c
bd
.
.
da
cb
.
)

(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
.
a-c
bd
.
.
da
cb
.
)

(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如整数集、有理数集、实数集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为?,对于A中的任意两个元素α=(a,b),β=(c,d),现规定:α?β=(ad+bc,bd-ac).
(1)计算:(2,3)?(-1,4);  
(2)A中是否存在元素γ满足:对于任意α∈A,都有γ?α=α成立,若存在,请求出元素γ;若不存在,请说明理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=
(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>


同步练习册答案