题目列表(包括答案和解析)
(本小题满分12分)
已知各项全不为零的数列{ak}的前k项和为Sk,且Sk=N*),其中a1=1.
(Ⅰ)求数列{ak}的通项公式;
(Ⅱ)对任意给定的正整数n(n≥2),数列{bk}满足(k=1,2,…,n-1),b1=1.
求b1+b2+…+bn.
(本小题满分12分)已知函数f(x)=x3+x2-2.
(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(2)求函数f(x)在区间(a-1,a)内的极值.
(本小题满分12分) 已知数列是公差不为的等差数列,其前项和为,且成等比数列.
(Ⅰ)求的通项公式;
(Ⅱ)是否存在正整数,使仍为数列中的一项?若存在,求出满足要求的所有正整数;若不存在,说明理由.
(本小题满分12分)
已知各项全不为零的数列{ak}的前k项和为Sk,且Sk=N*),其中a1=1.
(Ⅰ)求数列{ak}的通项公式;
(Ⅱ)对任意给定的正整数n(n≥2),数列{bk}满足(k=1,2,…,n-1),b1=1.
求b1+b2+…+bn.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com