甲.乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本由可变部分和固定部分组成:可变部分与速度v的平方成正比,且比例系数为b;固定部分为a元. (Ⅰ)把全程运输成本y(元)表示为速度v的函数,并指出这个函数的定义域; (Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶? 如图,在正方体ABCD-A1B1C1D1中,E.F分别是BB1.CD的中点. (Ⅰ)证明AD⊥D1F; (Ⅱ)求AE与D1F所成的角; (Ⅲ)证明面AED⊥面A1FD1; (Ⅳ)设AA1=2,求三棱锥E-AA1F的体积VE-AA1F. 已知过原点O的一条直线与函数y=log8x的图象交于A.B两点,分别过点A.B作y轴的平行线与函数y=log2x的图象交于C.D两点. (Ⅰ)证明点C.D和原点O在同一条直线上; (Ⅱ)当BC平行于x轴时,求点A的坐标. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

某化工企业生产某种产品,生产每件产品的成本为3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11 – x)2万件;若该企业所生产的产品能全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a (1≤a≤3).

(Ⅰ)求该企业正常生产一年的利润L (x)与出厂价x的函数关系式;        

(Ⅱ)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.

查看答案和解析>>

(本小题满分14分)

某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:

序      号

1

2

3

4

5

6

7

8

9

10

身高x(厘米)

192

164

172

177

176

159

171

166

182

166

脚长y( 码 )

48

38

40

43

44

37

40

39

46

39

序      号

11

12

13

14

15

16

17

18

19

20

身高x(厘米)

169

178

167

174

168

179

165

170

162

170

脚长y( 码 )

43

41

40

43

40

44

38

42

39

41

(Ⅰ)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的联列表:

高  个

非高个

合  计

大  脚

非大脚

12

合  计

20

   (Ⅱ)根据题(1)中表格的数据,若按99%的可靠性要求,能否认为脚的大小与身高之间有关系?

   (Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:

①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.

查看答案和解析>>

(本小题满分12分)
在清明节前,哈市某单位组织员工参加植树祭扫,林管局在植树前为了保证树苗质量,都会对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度,量出它们的高度如下:(单位:厘米)
甲:37  21  31  21  28  19  32  23  25  33
乙:10  30  47  27  46  14  26  11  43  46
(1)根据抽测结果画出茎叶图,并根据你所填写的茎叶图对两种树苗高度作比较,写出3个统计结论;
(2)如果认为甲种树苗高度超过30厘米为优质树苗,那么在己抽测的甲种10株树苗中任选两株栽种,记优质树苗的个数为,求的分布列和期望.

查看答案和解析>>

(本小题满分14分)

某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:

 (I)请画出适当的统计图(茎叶图或频率分布直方图);如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).

(Ⅱ)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个不高于 12.8秒的概率.

(III)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,

现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.

 

查看答案和解析>>

(本小题满分12分)   第11届全国人大五次会议于20 1 2年3月5日至3月1 4日在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和1 4名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.

 (Ⅰ)根据以上数据完成以下2×2列联表:

并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?

(参考公式:

 参考数据:

 (Ⅱ)已知会俄语的6名女记者中有4人曾在俄罗斯工作过,若从会俄语的6名女记者中随

机抽取2人做同声翻译,则抽出的2人都在俄罗斯工作过的概率是多少?

 

查看答案和解析>>


同步练习册答案