题目列表(包括答案和解析)
(本小题满分12分)
四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为、,记;
(Ⅰ)求随机变量的分布列和数学期望;
(Ⅱ)设“函数在区间上有且只有一个零点”为事件,求事件发生的概率.
(本小题满分12分)
某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.
(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为和)进行技术分析.求事件“”的概率.
(本小题满分12分)
四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子中,从中任意摸
出两个小球,它们的标号分别为,记.
(1)求随机变量的分布列及数学期望;
(2)设“函数在区间(2,3)上有且只有一个零点”为事件,求事件
发生的概率.
(本小题满分12分)
某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
环数 |
7 |
8 |
9 |
10 |
命中次数 |
2 |
7 |
8 |
3 |
(1)求此运动员射击的环数的平均值;
(2)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为,求事件的概率。
(本小题满分12分)个正数排成一个行列的数阵:
第1列 | 第2列 | 第3列 | … | 第列 | |
第1行 | … | ||||
第2行 | … | ||||
第3行 | … | ||||
… | … | … | … | … | … |
第行 | … |
其中表示该数阵中位于第行第列的数。已知该数阵每一行的数成等差数列,每一列的数成公比为2的等比数列,
(1)求; (2)设,求;
(3)在(2)的条件下,若不等式对任意的恒成立,求的最大值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com