A. B. C. D. 3.如右图.一个简单空间几何体的三视图其主视图与左视图 查看更多

 

题目列表(包括答案和解析)

如右图,A、B、C、D是某煤矿的四个采煤点,l是公路,图中所标线段为道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P、Q、R、S中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在

[  ]

A.P点    B.R点    C.Q点    D.S点

查看答案和解析>>

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,在x轴负半轴上有一点B,满足AB⊥AF2.且F1为BF2的中点.
(1)求椭圆C的离心率;
(2)D是过A,B,F2三点的圆上的点,D到直线l:x-
3
y-3=0的最大距离等于椭圆长轴的长,求椭圆C的方程.

查看答案和解析>>

在右图中,实线所围成的多边形区域是由四个全等正方形边接边所形成的.现若补上图中标有号码的其中一个全等正方形,如此则可得九个多边形区域(每个区域恰含有五个全等正方形),则这九个多边形区域中,可折叠成一无盖的正立方体容器的有(  )

查看答案和解析>>

如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;

(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;

(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

 

查看答案和解析>>

如图,在椭圆中,F1,F2分别为椭圆的左、右焦点,B、D分别

为椭圆的左、右顶点,A为椭圆在第一象限内的一点,直线AF1交椭圆于另

一点C,交y轴于点E,且点F1、F2三等分线段BD.

(1)求的值;

(2)若四边形EBCF2为平行四边形,求点C的坐标;

(3)当时,求直线AC的方程.

 

 

查看答案和解析>>

1、D    2、C   3、C    4、C    5、B    6、C

7、4    8、   9、   10、   

11、解:(Ⅰ)∵   底面ABCD是正方形,

∴AB⊥BC,

又平面PBC⊥底面ABCD  

平面PBC ∩  平面ABCD=BC

∴AB  ⊥平面PBC

又PC平面PBC

∴AB  ⊥CP  ………………3分

(Ⅱ)解法一:体积法.由题意,面

 

中点,则

.

再取中点,则   ………………5分

设点到平面的距离为,则由

.                   ………………7分

解法二:

中点,再取中点

过点,则

中,

∴点到平面的距离为。  ………………7分

(Ⅲ)

就是二面角的平面角.

∴二面角的大小为45°.   ………………12分

 

12、解:(I)证明:在直棱柱ABC-A1B1C1中,有A1C1⊥CC1

     ∵ ∠ACB=90º,∴A1C1⊥C1B1,即A1C1⊥平面C1CBB1

   ∵CG平面C1CBB1,∴A1C1⊥CG。┉┉┉┉┉┉┉┉2分

   在矩形C1CBB1中,CC1=BB1=2BC,G为BB1的中点,

   CG=BC,C1GBC,CC1=2BC

   ∴∠CGC1=90,即CG⊥C1G┉┉┉┉┉┉┉┉4分

而A1C1∩C1G=C1

∴CG⊥平面A1GC1

∴平面A1CG⊥平面A1GC1。┉┉┉┉┉┉┉┉6分

(II)由于CC1平面ABC,

 ∠ACB=90º,建立如图所示的空间坐标系,设AC=BC=CC1=a,则A(a,0,0),B(0,a,0)

A1(a,0,2a),G(0,a,a).

=(a,0,2a),=(0,a,a). ┉┉┉┉┉┉┉┉8分

设平面A1CG的法向量n1=(x1,y1,z1),

令z1=1,n1=(-2,-1,1). ┉┉┉┉┉┉┉┉9分

又平面ABC的法向量为n2=(0,0,1) ┉┉┉┉┉┉┉┉10分

设平面ABC与平面A1CG所成锐二面角的平面角为θ,

┉┉┉┉┉┉┉┉11分

即平面ABC与平面A1CG所成锐二面角的平面角的余弦值为。┉┉┉12分

 

 

 

 


同步练习册答案