(III)解:延长与AB延长线交于G点.连接CG 查看更多

 

题目列表(包括答案和解析)

(1)若椭圆的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦点依次为F1、F2,P是椭圆上异于长轴端点的任意一点.在此条件下我们可以提出这样一个问题:“设△PF1F2的过P角的外角平分线为l,自焦点F2引l的垂线,垂足为Q,试求Q点的轨迹方程?”
对该问题某同学给出了一个正确的求解,但部分解答过程因作业本受潮模糊了,我们在
精英家教网
这些模糊地方划了线,请你将它补充完整.
解:延长F2Q 交F1P的延长线于E,据题意,
E与F2关于l对称,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 

在△EF1F2中,显然OQ是平行于EF1的中位线,
所以|OQ|=
1
2
|EF1|=
 

注意到P是椭圆上异于长轴端点的点,所以Q点的轨迹是
 

其方程是:
 

(2)如图2,双曲线的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦点依次为F1、F2,P是双曲线上异于实轴端点的任意一点.请你试着提出与(1)类似的问题,并加以证明.

查看答案和解析>>

(2006•崇文区一模)如图,四棱锥P-ABCD的底面是正方形,侧面PAD垂直底面ABCD,且△PAD为正三角形,E为侧棱PD的中点.
(I)求证:AE⊥平面PCD;
(II)求平面PAB与平面PDC所成二面角的大小;
(III)求直线PB与平面PDC所成角的大小.

查看答案和解析>>

如图,AB⊥平面BCD,AB=BC=BD=2,DE∥AB,DE=1,∠CBD=60°,F为AC的中点.
(I)求点A到平面BCE的距离;
(II)证明:平面ABC⊥平面ACE;
(III)求平面BCD与平面ACE所成二面角的大小.

查看答案和解析>>

(2011•通州区一模)如图.四棱锥P-ABCD的底面是矩形,PA⊥底面ABCD.PA=AD=1,AB=
2
.M,N分别为AB、PC的中点.
(I)求证:MN∥平面PAD;
(II)求证:MN⊥平面PCD;
(III) 求平面DMN与平面DPA所成锐二面角的度数.

查看答案和解析>>

在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=
3
,E、F分别是A1C1、BC的中点,若平面ABE⊥平面BB1C1C
(I)求证AB⊥BC
(II)FC1∥平面ABE
(III)求平面ABE与平面EFC1所成锐二面角的余弦值.

查看答案和解析>>


同步练习册答案