1.若.求证:平面平面, 查看更多

 

题目列表(包括答案和解析)

平面直角坐标系中,O为坐标原点,给定两点M(1,-3)N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R)

(Ⅰ)求点C的轨迹方程;
(Ⅱ)设点C的轨迹与抛物线y2=4x交于A、B两点,求证:
OA
OB

(Ⅲ)求以AB为直径的圆的方程.

查看答案和解析>>

平面直角坐标系xOy中,已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个点
(n∈N*,k、b均为非零常数).
(1)若数列{xn}成等差数列,求证:数列{yn}也成等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求a1+a2的值;
(3)若点P满足
OP
=a1
OA1
+a2
OA2
+…+an
OAn
,我们称
OP
是向量
OA1
OA2
,…,
OAn
的线性组合,{an}是该线性组合的系数数列.当
OP
是向量
OA1
OA2
,…,
OAn
的线性组合时,请参考以下线索:
①系数数列{an}需满足怎样的条件,点P会落在直线l上?
②若点P落在直线l上,系数数列{an}会满足怎样的结论?
③能否根据你给出的系数数列{an}满足的条件,确定在直线l上的点P的个数或坐标?
试提出一个相关命题(或猜想)并开展研究,写出你的研究过程.[本小题将根据你提出的命题(或猜想)的完备程度和研究过程中体现的思维层次,给予不同的评分].

查看答案和解析>>

平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(Ⅰ)求证:
OA
OB

(Ⅱ)在x轴上是否存在一点P(m,0)(m∈R),使得过P点的直线交抛物线于D、E两点,并以该弦DE为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)
,若存在不同时为o的实数k和x,使
m
=
a
+(x2-3)
b
n
=-k
a
+x
b
m
n

(Ⅰ)试求函数关系式k=f(x).
(Ⅱ)对(Ⅰ)中的f(x),设h(x)=4f(x)-ax2在[1,+∞)上是单调函数.
①求实数a的取值范围;
②当a=-1时,如果存在x0≥1,h(x0)≥1,且h(h(x0))=x0,求证:h(x0)=x0

查看答案和解析>>

平面直角坐标系中,O为坐标原点,给定两点A(1,0)、B(0,-2),点C满足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求点C的轨迹方程;
(2)设点C的轨迹与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
交于两点M、N,且以MN为直径的圆过原点,求证:
1
a2
+
1
b2
为定值

(3)在(2)的条件下,若椭圆的离心率不大于
2
2
,求椭圆长轴长的取值范围.

查看答案和解析>>

17.本题满分14分.已知函数

(1)       求函数上的值域;

(2)       在中,若,求的值。

16

21.本小题满分12分.

已知函数fx.=lnx-

(I)        求函数fx.的单调增区间;

(II)     若函数fx.在[1,e]上的最小值为,求实数a的值。

3.已知,则的值为    .

A.-2          B.-1        C.1             D.2

19.解:1.∵

.

2.∵,∴

,∴

,∴

.

20.此题主要考查数列.等差.等比数列的概念.数列的递推公式.数列前n项和的求法

  同时考查学生的分析问题与解决问题的能力,逻辑推理能力及运算能力.

解:I.

    

Ⅱ.

16.本题满分14分.

解:1.连,四边形菱形  

www.ks5u.com

  的中点,

              

                   

2.当时,使得,连,交,则 的中点,又上中线,为正三角形的中心,令菱形的边长为,则

           

       

   即:  

22.本小题满分14分.

解:I.1.

    。…………………………………………1分

    处取得极值,

    …………………………………………………2分

    即

    ………………………………………4分

   ii.在

    由

          

          

   

    当;

    ;

    .……………………………………6分

    面

   

    且

    又

   

   

    ……………9分

   Ⅱ.当

    ①

    ②当时,

   

   

    ③

    从面得;

    综上得,.………………………14分

 

 


同步练习册答案