题目列表(包括答案和解析)
(本题满分12分)
在各项均为正数的等比数列﹛an﹜中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.
(1)求数列﹛an﹜的通项公式;
(2)设bn=log3an,求数列﹛anbn﹜的前n项和sn.
(本小题满分12分)已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4 (Ⅰ)求证:数列{bn}中的每一项都是数列{an}中的项;
(Ⅱ)若a1=2,设,求数列{cn}的前n项的和Tn
(Ⅲ)在(Ⅱ)的条件下,若有的最大值.
(本小题满分16分)记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+,S3=12+.
(1)求数列{an}的通项公式an及前n项和Sn;
(2)记bn=an-,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且,,…,,…成等比数列,其中n1=1,n2=3,求nk(用k表示);
(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com