题目列表(包括答案和解析)
(本小题满分13分)
在数列{a n}中,a1=2,点(a n,a n+1)(n∈N*)在直线y=2x上.
(Ⅰ)求数列{ a n }的通项公式;
(Ⅱ)若bn=log2 an,求数列的前n项和Tn.
(本小题满分13分)
已知f(x)=mx(m为常数,m>0且m≠1).
设f(a1),f(a2),…,f(an)…(n∈N?)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an·f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn;
(3)若cn=f(an)lgf(an),问是否存在m,使得数列{cn}中每一项恒小于它后面的项?若存在,
求出m的范围;若不存在,请说明理由.
(本小题满分13分)
数列的前项和为,。
(1)求证:数列成等比数列;
(2)求数列的通项公式;
(3)数列中是否存在连续三项可以构成等差数列?若存在,请求出一组适合条件的三项;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com