21.已知椭圆.通径长为1.且焦点与短轴两端点构成等边三角形. (1)求椭圆的方程, 的直线l交椭圆于A.B两点.交直线x=-4于点E.点Q分 所成比为λ.点E分所成比为μ.求证λ+μ为定值.并计算出该定值. 查看更多

 

题目列表(包括答案和解析)

已知椭圆,通径长为1,且焦点与短轴两端点构成等边三角形,(1)求椭圆的方程;(2)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,点Q分 所成比为λ,点E分所成比为μ,求证λ+μ为定值,并计算出该定值.

查看答案和解析>>

已知椭圆,通径长为1,且焦点与短轴两端点构成等边三角形.

   (1)求椭圆的方程;

   (2)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,点Q分 所成比为λ,点E分所成比为μ,求证λ+μ为定值,并计算出该定值.

查看答案和解析>>

已知椭圆,通径长为1,且焦点与短轴两端点构成等边三角形,(1)求椭圆的方程;(2)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,点Q分 所成比为λ,点E分所成比为μ,求证λ+μ为定值,并计算出该定值.

查看答案和解析>>

(2012•潍坊二模)如图,已知F(2,0)为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点,AB为椭圆的通径(过焦点且垂直于长轴的弦),线段OF的垂直平分线与椭圆相交于两点C、D,且∠CAD=90°.
(I)求椭圆的方程;
(II)设过点F斜率为k(k≠0)的直线l与椭圆相交于两点P、Q.若存在一定点E(m,0),使得x轴上的任意一点(异于点E、F)到直线EP、EQ的距离相等,求m的值.

查看答案和解析>>

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,O为坐标原点,过F2的直线l1与C1交于A,B两点,且△ABF1的周长为4
2
,l1的倾斜角为α.
(I)当l1垂直于x轴时,|AF2|+|BF2|=2
2
|AF2|•|BF2|

①求椭圆C1的方程;
②求证:对于?α∈[0,π),总有|AF2|+|BF2|=2
2
|AF2|•|BF2|

(II)在(I)的条件下,设直线l2与椭圆交于C,D两点,且OC⊥OD,过O作l2的垂线交l2于E,求E的轨迹方程C2,并比较C2与C1通径所在直线的位置关系.

查看答案和解析>>


同步练习册答案