12.对于任意整数x.y.函数满足.若=1.那么等于 ( ) A.-1 B.1 C.19 D.43 第Ⅱ卷 20080414 查看更多

 

题目列表(包括答案和解析)

12、对于任意整数x,y,函数f(x)满足f(x+y)=f(x)+f(y)+xy+1,若f(1)=1,则f(-8)等于(  )

查看答案和解析>>

(2006•朝阳区二模)设对于任意实数x、y,函数f(x)、g(x)满足f(x+1)=
1
3
f(x),且f(0)=3,g(x+y)=g(x)+2y,g(5)=13,n∈N*
(Ⅰ)求数列{f(n)}、{g(n)}的通项公式;
(Ⅱ)设cn=g[
n
2
f(n)
],求数列{cn}的前n项和Sn
(Ⅲ)已知
lim
n
 
2n+3
3n-1
=0,设F(n)=Sn-3n,是否存在整数m和M,使得对任意正整数n不等式m<F(n)<M恒成立?若存在,分别求出m和M的集合,并求出M-m的最小值;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

已知函数f(t)满足对任意实数xy都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.

   (1)求f(1)的值;

   (2)证明:对一切大于1的正整数t,恒有f(t)>t;

   (3)试求满足f(t)=t的整数t的个数,并说明理由.

查看答案和解析>>

若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
f(x1)+f(x2)
2
≤f(
x1+x2
2
)成立,则称函数y=f(x)为区间D上的凸函数.
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.

查看答案和解析>>


同步练习册答案