21. 查看更多

 

题目列表(包括答案和解析)

(本题12分)已知向量

    (1)求cos ()的值;

    (2)若0<<0,且sin=,求sin

查看答案和解析>>

(本题12分)已知数列是等差数列,a2 = 3,a5 = 6,数列的前n项和是Tn,且Tn +

(1)求数列的通项公式与前n项的和Mn

(2)求数列的通项公式;

(3)记cn =,求的前n项和Sn

查看答案和解析>>

(本题12分)在如图所示的四面体ABCD中,AB、BC、CD两两互相垂直,且BC=CD=1。(1)求证:平面ACD⊥平面ABC;(2)求二面角C-AB-D的大小。

查看答案和解析>>

(本题12分)设函数的定义域为A,集合

(1)求;  (2)若,求的取值范围。

查看答案和解析>>

(本题12分)某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如下表:

产品A(件)

产品B(件)

研制成本、搭载费用之和(万元)

20

30

计划最大资金额300万元

产品重量(千克)

10

5

最大搭载重量110千克

预计收益(万元)

80

60

如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

查看答案和解析>>

 

一、选择题(本大题共12小题,每小题5分,共60分。

1―5 BBACB    6―10 ADCDD    11―12 AB

二、填空题(本大题共4小题,每小题6分,共16分,

13.14   14.2   15.30   16.①③

三、解答题(本大题共6小题,共计76分)

17.解:(1)  …………2分

   (2)由题设, …………10分

 …………12分

18.解:(1)记“第一次与第二次取到的球上的号码的和是4”为事件A,则

 …………5分

所以第一次与第二次取到的地球上的号码的和是4的概率 …………6分

   (2)记“第一次与第二次取到的上的号码的积不小于6”为事件B,则

  …………11分

19.解法一:(1)∵E,F分别是AB和PB的中点,

∴EF∥PA  …………1分

又ABCD是正方形,∴CD⊥AD,…………2分

由PD⊥底面ABCD得CD⊥PD,CD⊥面PAD,

∴CD⊥PA,∴EF⊥CD。 …………4分

 

 

   (2)设AB=a,则由PD⊥底面ABCD及ABCD是正方形可求得

   (3)在平面PAD内是存在一点G,使G在平面PCB

上的射影为△PCB的外心,

G点位置是AD的中点。  …………9分

证明如下:由已知条件易证

Rt△PDG≌Rt△CDG≌Rt△BAG,…………10分

∴GP=GB=GC,即点G到△PBC三顶点的距离相等。 ……11分

∴G在平面PCB上的射影为△PCB的外心。 …………12分

解法二:以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系(如图)。

   (1)

  …………4分

 

 

   (2)设平面DEF的法向量为

   (3)假设存在点G满足题意

20.解:(1)设

   (2)

21.(1)令 …………1分

  …………2分

   (2)设

   (3)由

∴不等式化为  …………6分

由(2)已证 …………7分

①当

②当不成立,∴不等式的解集为 …………10分

③当

22.解:(1)  …………1分

   (2)设

①当

②当

 


同步练习册答案