题目列表(包括答案和解析)
(本小题满分14分)
已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.
(本小题满分14分)
已知椭圆的中心是坐标原点,焦点在x轴上,离心率为,又椭圆上任一点到两焦点的距离和为,过点M(0,)与x轴不垂直的直线交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.
(本小题满分14分)
已知椭圆中心在坐标原点,焦点在轴上,且经过、、三点.
(1)求椭圆的方程:
(2)若点为椭圆上不同于、的任意一点,,当内切圆的面积最大时,求内切圆圆心的坐标;
(3)若直线与椭圆交于、两点,证明直线与直线的交点在直线上.
(本小题满分14分) 已知中心在坐标原点的椭圆经过点,且点为其右焦点。
(1)求椭圆的方程;
(2)是否存在平行于的直线,使得直线与椭圆有公共点,且直线与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com