21. “我们称使上是连续的.单调的函数.且满足上有唯一的零点 .对于函数 (1)当在定义域内的单调性并求出极值, (2)若函数有三个零点.求实数m的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ) 求椭圆及其“伴随圆”的方程;

(Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

((本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ)求椭圆及其“伴随圆”的方程

(Ⅱ)试探究y轴上是否存在点(0, ),使得过点作直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.若存在,请求出的值;若不存在,请说明理由。

 

查看答案和解析>>

(本小题满分14分)

       给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

       (Ⅰ)求椭圆及其“伴随圆”的方程;

       (Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

查看答案和解析>>

(本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

       (Ⅰ)求椭圆及其“伴随圆”的方程

       (Ⅱ)试探究y轴上是否存在点(0, ,使得过点作直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.若存在,请求出的值;若不存在,请说明理由。

查看答案和解析>>

(本小题满分14分)

已知,数列的前项的和记为.

(1) 求的值,猜想的表达式;

(2) 请用数学归纳法证明你的猜想.

 

查看答案和解析>>


同步练习册答案