题目列表(包括答案和解析)
(本小题满分14分)如图,椭圆的焦点在x轴上,左右顶点分别为A1,A,上顶点B,抛物线C1,C2分别以A1,B为焦点,其顶点均为坐标原点O,C1与C2相交于直线上一点P.
(1)求椭圆C及抛物线C1,C2的方程;
(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M,N,已知点,求的最小值.
(本小题满分14分)
已知椭圆C1: (a>b>0)的离心率为,直线:+2=0与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切。
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F 1,右焦点F2,直线过点F1且垂直于椭圆的长轴,动直线垂直直线于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的点,且AB⊥ BC,求Yo的取值范围。
(本小题满分14分)
已知椭圆C1: (a>b>0)的离心率为,直线:+2=0与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切。
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F 1,右焦点F2,直线过点F1且垂直于椭圆的长轴,动直线垂直直线于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的点,且AB⊥ BC,求Yo的取值范围。
(2012年高考广东卷理科20)(本小题满分14分)
在平面直角坐标系xOy中,已知椭圆C1:的离心率e=,且椭圆C上的点到Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由。
(本小题满分14分)
已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设C??2与x轴交于点Q,不同的两点R、S在C2上,且 满足,
求的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com