题目列表(包括答案和解析)
(本小题满分12分) 已知椭圆的离心率,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.
(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
.(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,一个顶点为,且其右焦点到直线的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为 ,且过定点的直线,使与椭圆交于两个不同的点、,且?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)
已知椭圆:的离心率为,且过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)垂直于坐标轴的直线与椭圆相交于、两点,若以为直径的圆经过坐标原点.证明:圆的半径为定值.
.(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,该椭圆经过点,且离心率为.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com