21. 设函数.已知和为的极值点. (I)求和的值. (Ⅱ)讨论的单调性, (Ⅲ)设.试比较与的大小. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)设是实数,对函数和抛物线,有如下两个命题:函数的最小值小于0;抛物线上的点到其准线的距离.

已知“”和“”都为假命题,求的取值范围.

 

查看答案和解析>>

(本小题满分12分)设是实数,对函数和抛物线,有如下两个命题:函数的最小值小于0;抛物线上的点到其准线的距离.
已知“”和“”都为假命题,求的取值范围.

查看答案和解析>>

(本小题满分12分)设是实数,对函数和抛物线,有如下两个命题:函数的最小值小于0;抛物线上的点到其准线的距离.
已知“”和“”都为假命题,求的取值范围.

查看答案和解析>>

(本小题满分12分)已知函数f(x)=x3x2-2.

(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(anan+12-2an+1)(n∈N*)在函数yf′(x)的图象上,求证:点(nSn)也在yf′(x)的图象上;

(2)求函数f(x)在区间(a-1,a)内的极值.

 

 

查看答案和解析>>

(本小题满分12分) 已知函数

(1) 设F(x)= 上单调递增,求的取值范围。

(2)若函数的图象有两个不同的交点M、N,求的取值范围;

(3)在(2)的条件下,过线段MN的中点作轴的垂线分别与的图像和的图像交S、T点,以S为切点作的切线,以T为切点作的切线.是否存在实数使得,如果存在,求出的值;如果不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案