20.已知双曲线C的中心在原点.焦点在x轴上.右准线为一条渐近线的方程是过双曲线C的右焦点F2的一条弦交双曲线右支于P.Q两点.R是弦PQ的中点. (1)求双曲线C的方程, (2)若在l的左侧能作出直线m:x=a.使点R在直线m上的射影S满足.当点P在曲线C上运动时.求a的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

已知双曲线G的中心在原点,它的渐近线与圆x2y2-10x+20=0相切.过点P(-4,0)作斜率为的直线l,使得lG交于AB两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.

 (1)求双曲线G的渐近线的方程;

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

 

查看答案和解析>>

 (本小题满分13分)

已知双曲线G的中心在原点,它的渐近线与圆x2y2-10x+20=0相切.过点P(-4,0)作斜率为的直线l,使得lG交于AB两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.

(1)求双曲线G的渐近线的方程;

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

查看答案和解析>>

 (本小题满分13分)

已知双曲线G的中心在原点,它的渐近线与圆x2y2-10x+20=0相切.过点P(-4,0)作斜率为的直线l,使得lG交于AB两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.

(1)求双曲线G的渐近线的方程;

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

查看答案和解析>>

(本小题满分13分)
已知双曲线G的中心在原点,它的渐近线与圆x2y2-10x+20=0相切.过点P(-4,0)作斜率为的直线l,使得lG交于AB两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

查看答案和解析>>

(本小题满分13分)

已知双曲线C: =1(a>0,b>0)的离心率为焦点到渐近线的距离为

(1)求双曲线C的方程;

(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在抛物

线y2=4 x上,求m的值.

 

查看答案和解析>>


同步练习册答案