题目列表(包括答案和解析)
(本小题满分12分)
如图,PC⊥平面ABC,PM∥CB,∠ACB=120°,PM=AC=1,BC=2,异面直线AM与直线PC所成的角为60°.
(Ⅰ)求二面角M-AC-B大小的正切值;
(Ⅱ)求三棱锥P-MAC的体积.
(本小题满分12分)
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC。
(1)求三棱锥P-ABC的体积;
(2)求异面直线PA与BD所成角余弦值的大小。
(本小题满分12分)如图,在三棱锥P-ABC中,,,点 分别是AC、PC的中点,底面ABC.
(1)求证:平面;
(2)当时,求直线与平面所成的角的大小;
(3)当取何值时,在平面内的射影恰好为的重心?
|
(本小题满分12分)
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)当点E在何位置时,BD⊥AE?证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.
(本小题满分12分)
如图1,在三棱锥P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1) 证明:A.D⊥平面PBC;
(2) 求三棱锥D-A.BC的体积;
(3) 在∠A.CB的平分线上确定一点Q,使得PQ∥平面A.BD,并求此时PQ的长.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com