11.若同向的单位向量是 . 查看更多

 

题目列表(包括答案和解析)

给出下列四个命题:
①“向量的夹角为锐角”的充要条件是“>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”。若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象;
其中真命题的序号是(    )。(请写出所有真命题的序号)

查看答案和解析>>

 给出下列四个命题:

①“向量,的夹角为锐角”的充要条件是“·>0”;

②如果f(x)=x,则对任意的x1x2Î(0,+¥),且x1¹x2,都有f()>;

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意xÎ[a,b],都有|f(x)−g(x)|£1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2−3x+4与g(x)=2x−3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];

④记函数y=f(x)的反函数为y=f −1(x),要得到y=f −1(1−x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f −1(1−x)的图象.其中真命题的序号是            。(请写出所有真命题的序号)

 

查看答案和解析>>

 给出下列四个命题:

①“向量,的夹角为锐角”的充要条件是“·>0”;

②如果f(x)=x,则对任意的x1x2Î(0,+¥),且x1¹x2,都有f()>;

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意xÎ[a,b],都有|f(x)−g(x)|£1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2−3x+4与g(x)=2x−3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];

④记函数y=f(x)的反函数为y=f −1(x),要得到y=f −1(1−x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f −1(1−x)的图象.其中真命题的序号是            。(请写出所有真命题的序号)

 

查看答案和解析>>

,分别是直角坐标系x轴,y轴方向上的单位向量,若在同一直线上有三点A、B、C,且,求实数m,n的值。

查看答案和解析>>

如图,设是平面内相交成角的两条数轴,分别是与轴、

轴正方向同向的单位向量。若向量,则把有序实数对叫做向量在坐标系中的坐标。若,则=         

 

查看答案和解析>>


同步练习册答案