14.设是定于在上的函数.且满足:①对任意.恒有,②对任意.恒有.则关于函数有: (1)对任意.都有,(2)对任意.都有; (3)对任意.恒有,(4)当.函数为减函数. 上述四个命题中正确的有 . 查看更多

 

题目列表(包括答案和解析)

是定义在R上的偶函数,满足,且在[-1,0]上是增函数,给出下列关于函数的判断:①是周期函数;②的图像关于直线x=1对称;③在[0,1]上是增函数;其中所有正确判断的序号是       

 

查看答案和解析>>

已知是定义在上的增函数,且记

(1)设,若数列满足,试写出的通项公式及前的和

(2)对于任意,若,判断的值的符号。

查看答案和解析>>

已知函数图像上两点.

(1)若,求证:为定值;

(2)设,其中,求关于的解析式;

(3)对(2)中的,设数列满足,当时,,问是否存在角,使不等式对一切都成立?若存在,求出角的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数f1(x)=lg|x-p1|,f2(x)=lg(|x-p2|+2)(x∈R,p1,p2为常数)
函数f(x)定义为对每个给定的实数x(x≠p1),f(x)=
f1(x)f1(x)≤f2(x)
f2(x)f2(x)≤f1(x)

(1)当p1=2时,求证:y=f1(x)图象关于x=2对称;
(2)求f(x)=f1(x)对所有实数x(x≠p1)均成立的条件(用p1、p2表示);
(3)设a,b是两个实数,满足a<b,且p1,p2∈(a,b),若f(a)=f(b)求证:函数f(x)在区间[a,b]上单调增区间的长度之和为
b-a
2
.(区间[m,n]、(m,n)或(m,n]的长度均定义为n-m)

查看答案和解析>>

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>


同步练习册答案