19. 已知 (Ⅰ)求的单调区间, (Ⅱ)若以对任意的∈(0.2]恒成立.求实数的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
13
x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b,并求f(x)的单调区间;
(2)令a=-1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程).

查看答案和解析>>

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

已知定义域为[0,1]的函数f(x)同时满足以下三个条件:
(1)对任意的x∈[0,1],总有f(x)>0;
(2)f(1)=1;
(3)若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立,则称f(x)为“友谊函数”,请解答下列各题:
①若已知f(x)为“友谊函数”,求f(0)的值并判断函数的单调性;
②函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?并给出理由.

查看答案和解析>>

已知函数f(x)=x2+
2
x
+alnx(x>0),
(Ⅰ)若函数y=f(x)的图象在x=1处的切线l在两坐标轴上的截距相等,求a的值;
(Ⅱ)若f(x)在[1,+∞]上单调递增,求a的取值范围;
(Ⅲ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1,x2总有以下不等式
1
2
[f(x1)+f(x2)≥f(
x1+x2
2
)成立,则称函数y=f(x)为区间D上的“凹函数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b.则函数y=g(x)的图象关于点(a,b)成中心对称”.设函数f(x)=
x+1-aa-x
,定义域为A.
(1)试证明y=f(x)的图象关于点(a,-1)成中心对称;
(2)写出f(x)的单调区间(不证明),并求当x∈[a-2,a-1]时,函数f(x)的值域;
(3)对于给定的x1∈A,设计构造过程:x2=f(x1),x3=f(x2),…,xn+1=f(xn).如果xi∈A(i=1,2,3,4…),构造过程将继续下去;如果xi∉A,构造过程将停止.若对任意x1∈A,构造过程都可以无限进行下去,求a的值.

查看答案和解析>>


同步练习册答案