题目列表(包括答案和解析)
已知是互不相等的非零实数.用反证法证明三个方程,
,至少有一个方程有两个相异实根.
已知是互不相等的非零实数,求证:由确定的三条抛物线至少有一条与轴有两个不同的交点.
【解析】本试题主要是考查了运用反证法思想,对于正面解决难的问题的运用。
(本题满分12分)已知是函数的一个极值点.
(Ⅰ)求的值;
(Ⅱ)当,时,证明:
(本题满分12分)
已知是一个公差大于的等差数列,且满足.数列,,,…,是首项为,公比为的等比数列.
(1) 求数列的通项公式;
(2) 若,求数列的前项和.
(本题满分12分)已知是定义域为[-3,3]的函数,并且设,,其中常数c为实数.(1)求和的定义域;(2)如果和两个函数的定义域的交集为非空集合,求c的取值范围;(3)当在其定义域内是奇函数,又是增函数时,求使的自变量的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com