已知函数在[1.3]上恒正.则实数 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
x1+|x|
(x∈R)时,则下列结论正确的是
(1)(2)(3)
(1)(2)(3)

(1)?x∈R,等式f(-x)+f(x)=0恒成立
(2)?m∈(0,1),使得方程|f(x)|=m有两个不等实数根
(3)?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2
(4)?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点.

查看答案和解析>>

已知函数f(x)=2-x-1-3,x∈R,g(x)=
f(x-1)+2,-1<x≤0
g(x-1)+k,x>0
,有下列说法:
①不等式f(x)>0的解集是(-∞,-1-log23);
②若关于x的方程f2(x)+8f(x)-m=0有实数解,则m≥-16;
③当k=0时,若g(x)≤m有解,则m的取值范围为[0,+∞);若g(x)<m恒成立,则m的取值范围为[1,+∞);
④若k=2,则函数h(x)=g(x)-2x在区间[0,n](n∈N*)上有n+1个零点.
其中你认为正确的所有说法的序号是
①③④
①③④

查看答案和解析>>

已知函数 时,则下列结论正确的是         .

(1),等式恒成立

(2),使得方程有两个不等实数根

(3),若,则一定有

(4),使得函数上有三个零点

 

查看答案和解析>>

已知函数 时,则下列结论正确的是        .
(1),等式恒成立
(2),使得方程有两个不等实数根
(3),若,则一定有
(4),使得函数上有三个零点

查看答案和解析>>

已知函数f(x)=2-x-1-3,x∈R,,有下列说法:
①不等式f(x)>0的解集是(-∞,-1-log23);
②若关于x的方程f2(x)+8f(x)-m=0有实数解,则m≥-16;
③当k=0时,若g(x)≤m有解,则m的取值范围为[0,+∞);若g(x)<m恒成立,则m的取值范围为[1,+∞);
④若k=2,则函数h(x)=g(x)-2x在区间[0,n](n∈N*)上有n+1个零点.
其中你认为正确的所有说法的序号是   

查看答案和解析>>


同步练习册答案