题目列表(包括答案和解析)
(本小题满分14分)
(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;= ;
(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论
(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆+ =1(a>b>0)提出一个有深度的结论,并证明之.
下图展示了一个由区间(0,4)到实数集R的映射过程:区间(0,4)中的实数m对应数
轴上的点M(如图1),将线段AB围成一个正方形,使两端点A、B恰好重合(如图2),
再将这个正方形放在平面直角坐标系中,使其中两个顶点在y轴上,点A的坐标为(0,4)
(如图3),图3中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.
现给出以下命题:
① f(2)=0; ②f(x)的图象关于点(2,0)对称;
③f(x)在区间(3,4)上为常数函数; ④f(x)为偶函数。
其中正确命题的个数有
A. 1 B. 2 C. 3 D. 4
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com