21.设函数.不等式的解集为.试求不等式的解集. 查看更多

 

题目列表(包括答案和解析)

设函数,不等式的解集为(一1,2),试求不等式的解集.

查看答案和解析>>

设函数f(x)=kax-a-x(a>0且a≠1)是奇函数,
(1)求k的值;
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若f(1)=
32
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,试写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R上的奇函数.
(1)求k的值.
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0试求不等式f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若f(1)=
32
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)
上的最小值为-2,求m.

查看答案和解析>>


同步练习册答案