题目列表(包括答案和解析)
(本小题满分12分)已知函数
(I)若函数在区间上存在极值,求实数a的取值范围;
(II)当时,不等式恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1),其定义域为,则令,
则,
当时,;当时,
在(0,1)上单调递增,在上单调递减,
即当时,函数取得极大值. (3分)
函数在区间上存在极值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,则,
,即在上单调递增, (7分)
,从而,故在上单调递增, (7分)
(8分)
(3)由(2)知,当时,恒成立,即,
令,则, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
(本小题满分12分)
已知函数,曲线在点处的切线方程为.
(I)求a,b的值;
(II)如果当x>0,且时,,求k的取值范围.
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.
(本题满分12分)
已知函数,当恒成立的a的最小值为k,存在n个
正数,且,任取n个自变量的值
(I)求k的值;
(II)如果
(III)如果,且存在n个自变量的值,使,求证:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com