9.若一次函数满足:.且.则的值是 A.5 B.4 C.3 D.2 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)是区间D⊆[0,+∞)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x),且满足下列条件:①f1(x)是D上的增函数;②f2(x)是D上的减函数;③函数f2(x)的值域A⊆[0,+∞),则称函数f(x)是区间D上的“偏增函数”.
(1)(i) 问函数y=sinx+cosx是否是区间(0,
π
4
)
上的“偏增函数”?并说明理由;
(ii)证明函数y=sinx是区间(0,
π
4
)
上的“偏增函数”.
(2)证明:对任意的一次函数f(x)=kx+b(k>0),必存在一个区间D⊆[0,+∞),使f(x)为D上的“偏增函数”.

查看答案和解析>>

已知函数f(x)是区间D⊆[0,+∞)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x),且满足下列条件:①f1(x)是D上的增函数;②f2(x)是D上的减函数;③函数f2(x)的值域A⊆[0,+∞),则称函数f(x)是区间D上的“偏增函数”.
(1)(i) 问函数y=sinx+cosx是否是区间(0,
π
4
)
上的“偏增函数”?并说明理由;
(ii)证明函数y=sinx是区间(0,
π
4
)
上的“偏增函数”.
(2)证明:对任意的一次函数f(x)=kx+b(k>0),必存在一个区间D⊆[0,+∞),使f(x)为D上的“偏增函数”.

查看答案和解析>>

(理)定义:若存在常数k,使得对定义域D内的任意两个不同的实数x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,则称f(x)在D上满足利普希茨(Lipschitz)条件.
(1)试举出一个满足利普希茨(Lipschitz)条件的函数及常数k的值,并加以验证;
(2)若函数f(x)=
x+1
在[1,+∞)
上满足利普希茨(Lipschitz)条件,求常数k的最小值;
(3)现有函数f(x)=sinx,请找出所有的一次函数g(x),使得下列条件同时成立:
①函数g(x)满足利普希茨(Lipschitz)条件;
②方程g(x)=0的根t也是方程f(
4
)=
2
sin(
2
-
π
4
)=-
2
cos
π
4
=-1

③方程f(g(x))=g(f(x))在区间[0,2π)上有且仅有一解.

查看答案和解析>>

下列命题中:
①f(x)的图象与f(-x)关于y轴对称.
②f(x)的图象与-f(-x)的图象关于原点对称.
③y=|lgx|与y=lg|x|的定义域相同,它们都只有一个零点.
④二次函数f(x)满足f(2-x)=f(2+x)并且有最小值,则f(0)<f(5).
⑤若定义在R上的奇函数f(x),有f(3+x)=-f(x),则f(2010)=0
其中所有正确命题的序号是
①②④⑤
①②④⑤

查看答案和解析>>

下列命题中:
①f(x)的图象与f(-x)关于y轴对称.
②f(x)的图象与-f(-x)的图象关于原点对称.
③y=|lgx|与y=lg|x|的定义域相同,它们都只有一个零点.
④二次函数f(x)满足f(2-x)=f(2+x)并且有最小值,则f(0)<f(5).
⑤若定义在R上的奇函数f(x),有f(3+x)=-f(x),则f(2010)=0
其中所有正确命题的序号是   

查看答案和解析>>


同步练习册答案