15.如果一个实数数列满足条件:(为常数.).则称这一数列 “伪等差数列 . 称为“伪公差 .给出下列关于某个伪等差数列的结论: ①对于任意的首项.若<0,则这一数列必为有穷数列, ②当>0, >0时.这一数列必为单调递增数列, ③这一数列可以是一个周期数列, ④若这一数列的首项为1.伪公差为3.可以是这一数列中的一项, ⑤若这一数列的首项为0.第三项为-1.则这一数列的伪公差可以是. 其中正确的结论是 . 查看更多

 

题目列表(包括答案和解析)

 如果一个实数数列满足条件:为常数,),则称这一数列 “伪等差数列”, 称为“伪公差”。给出下列关于某个伪等差数列的结论:

①对于任意的首项,若<0,则这一数列必为有穷数列;

②当>0, >0时,这一数列必为单调递增数列;

③这一数列可以是一个周期数列;

④若这一数列的首项为1,伪公差为3,可以是这一数列中的一项;

⑤若这一数列的首项为0,第三项为-1,则这一数列的伪公差可以是

其中正确的结论是­­________________.

 

查看答案和解析>>

对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “M类数列”.

(1)若,数列是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;

(2)证明:若数列是“M类数列”,则数列也是“M类数列”;

(3)若数列满足为常数.求数列项的和.并判断是否为“M类数列”,说明理由;

(4)根据对(2)(3)问题的研究,对数列的相邻两项,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>

对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>

对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>

对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>


同步练习册答案