题目列表(包括答案和解析)
已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足.
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且,则称b为数列{bn}的“上渐近值”,令,求数列{p1+p2+…+pn-2n}的“上渐近值”.
已知数列{an}有a1a=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足.
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且,则称b为数列{bn}的“上渐近值”,令,求数列{p1+p2+…+pn-2n}的“上渐近值”.
已知数列{an}有a1=a,a2=p(常数 p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足.
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)(理科生答文科生不答)对于数列{bn},假如存在一个常数使得对任意的正整数n都有bn<b,且,则称b为数列{bn}的“上渐近值”,令,求数列{p1+p2+…+pn-2n}的“上渐近值”.
已知,数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足.
(1)求a的值;
(2)试确定数列{an}是不是等差数列,若是,求出其通项公式.若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b且,则称b为数列{bn}的“上渐进值”,令,求数列{p1+p2+…+pn-2n}的“上渐进值”.
对于数列{},下列命题
①对任意n∈N,都有=n2+2n,则通项=n2-1,n∈N;
②若通项满足(-n)?(-)=0,则{}必是等差数列或是等比数列;
③若数列的每一项都适合=,则a11=0;
④若>对任意n∈N恒成立,则{}是递增数列.
其中正确的命题有( )个w.w.w.k.s.5.u.c.o.m
A.0 B.湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com