某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:
序号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
数学成绩 |
95 |
75 |
80 |
94 |
92 |
65 |
67 |
84 |
98 |
71 |
物理成绩 |
90 |
63 |
72 |
87 |
91 |
71 |
58 |
82 |
93 |
81 |
序号 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
数学成绩 |
67 |
93 |
64 |
78 |
77 |
90 |
57 |
83 |
72 |
83 |
物理成绩 |
77 |
82 |
48 |
85 |
69 |
91 |
61 |
84 |
78 |
86 |
若数学成绩90分以上为优秀,物理成绩85分(含85分)以上为优秀.
(Ⅰ)根据上表完成下面的2×2列联表:
|
数学成绩优秀 |
数学成绩不优秀 |
合计 |
物理成绩优秀 |
|
|
|
物理成绩不优秀 |
|
12 |
|
合计 |
|
|
20 |
(Ⅱ)根据题(1)中表格的数据计算,有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,试求:抽到12号的概率的概率.
参考数据公式:①独立性检验临界值表
P(K2≥x0) |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
x0 |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
②独立性检验随机变量K
2值的计算公式:K
2=
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
.