15.由1,2,3,4,-, n为第一行.从第二行开始每行的每个数都等于其肩上两个数之和构成如图所示的三角形数表设f (i.j)( i.j =1,2,3,-, n且i + j≤n + 1, n∈N+)表示第i行的第j个数. (1)当j≤n –3时.f (4, j)用j表示为 , (2)当n = 100时.M = . 查看更多

 

题目列表(包括答案和解析)

(2013•韶关二模)以下四个命题
①在一次试卷分析中,从每个试室中抽取第5号考生的成绩进行统计,是简单随机抽样;
②样本数据:3,4,5,6,7的方差为2;
③对于相关系数r,|r|越接近1,则线性相关程度越强;
④通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下列联表:

总计
走天桥 40 20 60
走斑马线 20 30 50
总计 60 50 110
附表:
P(K2≥k) 0.05 0.010 0.001
k 3.841 6.635 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
可得,k2=
110×(40×30-20×20)
60×50×60×50
=7.8

则有99%以上的把握认为“选择过马路方式与性别有关”.其中正确的命题序号是
②③④
②③④

查看答案和解析>>

(2011•丹东模拟)如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,…,依此类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是
1
2
.记小球遇到第n行第m个障碍物(从左至右)上顶点的概率为P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表达式(不必证明);
(Ⅱ)已知f(x)=
4-x,1≤x≤3
x-3,3<x≤6
,设小球遇到第6行第m个障碍物(从左至右)上顶点时,得到的分数为ξ=f(m),试求ξ的分布列及数学期望.

查看答案和解析>>


同步练习册答案