7.直线y = x + 1与椭圆m x 2 + n y 2 = 1相交于A.B两点.弦AB的中点的横坐标是–.则双曲线=1的两条渐近线所夹的锐角等于( ) A.2 arctan 2 B.2 arctan C.π – 2 arctan 2 D.π – 2 arctan 查看更多

 

题目列表(包括答案和解析)

直线y = x + 1与椭圆m x 2 + n y 2 = 1( mn > 0 )相交于A,B两点,弦AB的中点的横坐标是,则双曲线= 1的两条渐近线所夹的锐角等于(    )

(A)2 arctan 2       (B)2 arctan     (C)π 2 arctan 2     (D)π 2 arctan

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
1
2

(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,点P是其上的动点,
(1)当△PF1F2内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点A(2,1).
(1)求椭圆C的标准方程;
(2)若直线l:x-1-y=0与椭圆C交于不同的两点M,N,求|MN|的值.

查看答案和解析>>

椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.
(1)求椭圆C的标准方程;
(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.

查看答案和解析>>

设椭圆M=1(a>)的右焦点为F1,直线lxx轴交于点A,若1=2 (其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆Nx2+(y-2)2=1的任意一条直径(EF为直径的两个端点),求·的最大值.

查看答案和解析>>


同步练习册答案