17. 用0.1.2.3.4.5这六个数字 (1)可组成多少个不超过6位的不同的自然数? (2)可组成多少个无重复数字的五位数? (3)可组成多少个无重复数字的五位奇数? (4可组成多少个无重复数字的能被5整除的五位数? 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)

某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:

组号

分组

频数

频率

第一组

8

0.16

第二组

0.24

第三组

15

第四组

10

0.20

第五组

5

0.10

合              计

50

1.00

(1)写出表中①②位置的数据;

(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;

(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.

查看答案和解析>>

(本题满分14分)

x1x2是函数的两个极值点,且

(1)   用a表示,并求出a的取值范围.

(2)   证明: .

(3)   若函数 ,证明:当x1<0时, .

 

查看答案和解析>>

(本小题满分14分)

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

喜爱打篮球

不喜爱打篮球

合计

男生

 

5

 

女生

10

 

 

合计

 

 

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整(不用写计算过程);

(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;

(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为,求的分布列与期望.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 (参考公式:,其中)

 

查看答案和解析>>

(本小题满分14分)已知函数 (I)求曲线处的切线方程;   (Ⅱ)求证函数在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)

   (III)当试求实数的取值范围。

查看答案和解析>>

(本小题满分14分)椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:(λ≥2)。
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程。

查看答案和解析>>


同步练习册答案